THE EFFECT OF PARTIAL SKIRT ON THE BEARING CAPACITY OF SQUARE FOOTING ON SAND

To fulfill most of the requirements to achieve the Bachelor degree of S - 1 Civil Engineering

Arranged by:

MOHAMMAD ADNAN MAHMOUD OWEIDAT D 100 144 032

STUDY OF CIVIL ENGINEERING ENGINEERING FACULTY UNIVERSITAS MUHAMMADIYAH SURAKARTA 2018

APROVAL SHEET

The effect of partial skirt on the bearing capacity of square footing on sand

Final Project

Filed and maintained for the final Exam front of Examiners board Dated: Juli 6, 2018

Arranged by:

MOHAMMAD ADNAN MAHMOUD OWEIDAT D 100 144 032

Composition of the Board of Examiners:

Supervisor

Anto Budi Lis yawan, ST, M, Sc

K: 913

Yenny Nurchasanah, ST, MT

Examine

VIII - 021

Examiner II

Ir. Renaningsih, MT

NIK: 733

Final Project was accepted as one of the requirements to achieve the degree of Bachelor of S-1 Civil Engineering Surakarta, Juli 6, 2018

Dean of the Engineering Facility

Superione PhD.

Sumirjone, PhD.

Civil Engineering

Mochania Solikin, PhD

SURAKANIK: 79

AUTHENTICITY STATEMENT OF FINAL PROJECT

Bismillahirrahmanirrohim,

The undersigned, me:

Name : MOHAMMAD ADNAN MAHMOUD OWEIDAT

NIM : D 100 144 032

Faculty / Department : ENGINEERING / CIVIL ENGINEERING

Type : FINAL PROJECT

Title : THE EFFECT OF PARTIAL SKIRT ON THE

BEARING CAPACITY OF SQUARE FOOTING

ON SAND

Stating the fact that the thesis that I made and submitted, is the result of my own work, except quotations - citations and summary - a summary of everything I have explained the source. If later or can be proved that this thesis traced, then I am willing to accept any sanction from the Department of Civil Engineering. Faculty of Engineering and degrees and diplomas are awarded by the Universitas Muhammadiyah Surakarta void I received.

This statement I make with real and may be used as appropriate.

MOHAMMAD ADNAN MAHMOUD OWEIDAT

Surakarta july

MOTTO

"Education is the best equipment for the old days"

(Aristoteles)

"You cannot change other people, you must be the changing you expect from others"

(Mahatma Gandhi)

"Live Like a tree, lush fruit, lives on the edge of the road and pelted the stones, but rewarded with fruit"

(Abu Bakr Sibli)

"Our greatest pride is not never fail, but bounced back every time we fall"

"(Confucius)

PREFACE

Assalamu alatkumWrWb

Praise to Allah SWT for His grace and His mercy so the author could finish the Final Task Report well

The preparation of Final Task with the title the design of footing foundation using program geo 5 in (hi sudalmiya rais ums mosque, surakarta)

The Final Task arranged for fulfil the requirements of achieving SI graduate degree of Civil Engineering Department, Engineering Faculty of Universitas Muhammadiyah Surakarta

The Final Task can be finished with supports of several parties Therefore in this occasion, the author would like to say thank you to

Mr Ir Sn Sunarjono, MT, Ph D as a Dean of Engineering Faculty of Universitas Muhammadiyah Surakarta

Mr. Mochamad Solikin, ST, M.T. Ph.D as a Head Program of Civil

Mr Anto Budi Listyawan, S.T. M.Sc as an Acamedic Counselor and as the first examiner

Mrs . Yenny Nurchasanah, ST, MT as the first Examiner

Mrs. Ir. Renaningsih, M.T as the second Examiner

All lecturers of Civil Engineering Department who has provide knowledge

To my brother and sister and my entire family, thank you for the support

To all my friends in Civil Engineering Department of Universitas and love support Muhammadiyah Surakarta thanks for the help

To CESA, my civil's family, keep going guys

To all parties who cannot be mentioned one by one, thanks for the help

The author reslizes that this report is far from perfect, so with humility and constructive criticism that aunhors hopes for the perfection of the Final Task Report. The final word from the auhor, hopefully the Final Task Report advantegeous for us Amin

Wassalamu alaikan Wr. Wh

Surakarta 2018

The Author

TABLE OF CONTENT

CERTIFICATI	ON	SHEET	ii
DECLARATIO)N C	F AUTHORSHIP	iii
MOTTO			iv
PREFACE			v
TABLE OF CO)NT	ENT	vii
LIST OF TABI	Æ		ix
LIST OF FIGU	RE.		x
LIST OF APPE	ND	IX	xi
ABSTRACT			xii
CHAPTER I.	IN	TRODUCTION	1
	A.	Background	1
	B.	Problem Formulation	2
	C.	Research Objective and Benefit	2
	D.	Limitation Problem	2
	E.	Research Authenticity	3
CHAPTER II.	LIT	TERATURE REVIEW	5
	A.	Footing	5
	B.	Sand	5
	C.	Footing on Sand Soil	6
	D.	Similar Research Review	7
CHAPTER III.	ВА	SIC THEORY	8
	A.	Bearing Capacity	8
	B.	Settlement	10
	C.	Skirt (Vertical Plate)	11
	D.	Water Content and Compaction	11

CHAPTER IV.	RE:	SEARCH METHOD	12
	A.	General	12
	B.	Research Location	12
	C.	Research Material	12
	D.	Research Equipment	12
	E.	Research Step	15
CHAPTER V.	AN	ALYSIS AND DISCUSSION	18
	A.	General Test Result	18
	B.	Ultimate Bearing Capacity	20
	C.	Settlement	24
CHAPTER VI.	CO	NCLUSION AND RECOMMENDATION	27
	A.	Conclusion	27
	B.	Recommendation	28
REFERENCE			29
APPENDIX			30

LIST OF TABLE

Table I.1.	Differences between this study and El Wakil's	4
Table V.1.	Ultimate bearing capacity on the different skirt length	20
Table V.2.	Ultimate bearing capacity on the different diameter	22
Table V.3.	Ultimate bearing capacity increment	23
Table V.4.	Settlement alteration on 2.00 kN load	26

LIST OF FIGURE

Figure III.1.	Types of bearing capacity failure	9
Figure IV.1.	Skirted circular footing model	13
Figure IV.2.	Sketch setup of testing procedures	14
Figure IV.3.	Flow Chart of Research	17
Figure V.1.	Load-settlement relationship for footing diameter 75 mm	18
Figure V.2.	Load-settlement relationship for footing diameter 100 mm	19
Figure V.3.	Load-settlement relationship for footing diameter 150 mm	19
Figure V.4.	Ultimate bearing capacity-L/B ratio relationship, different L	21
Figure V.5.	Ultimate bearing capacity-L/B ratio relationship, different B	22
Figure V.6.	Settlement analysis on footing width 75 mm	24
Figure V.7.	Settlement analysis on footing width 100 mm	25
Figure V.8.	Settlement analysis on footing width 150 mm	25

LIST OF APPENDIX

Appendix 1.	Skirt and unskirted circular footing test with diameter	
	footing 75 mm	30
Appendix 2.	Skirt and unskirted circular footing test with width	
	footing 100 mm	34
Appendix 3.	Skirt and unskirted circular footing test with width	
	footing 150 mm	41
Appendix 4.	Documentation of research	50
Appendix 5.	Consultation Activities Report	57

Bearing capacity of partial skirted footing clay upper sand

Abstract

Capacity bearing considered as the main factor for foundation design, it is a mandatory to reach an effort to enhance the bearing capacity, Attached skirts that linked to the bellow it is an alternative of it, it could be used to enhancement capacity bearing of shallow footing on soil sand, the research testing twelve lab experiments on steel square footing with different width with different formulation of water content and compaction method, from the test it could conclude skirts are very effective to enhance the ultimate capacity, it increases the length as well as it reduce the settlement, settlement decreases when it observed on the same value of load, the longest skirted has the best situation of settlement. The settlement generally decreases, when it is observed on the same value of load, 5.00 KN. Skirted square footing with the longest skirt has the best condition of settlement.

Keywords: bearing capacity, square footing, foundation, sand, partial skirt.