TUGAS AKHIR

PENGARUH VARIASI KECEPATAN ALIRAN UDARA PRIMER DAN PENAMBAHAN UDARA PADA REAKTOR KOMPOR GASIFIKASI SEKAM PADI METODE *TOP-LIT UP DRAFT* DENGAN PERBEDAAN DIAMETER SILINDER REAKTOR

Tugas Akhir Ini Disusun Untuk Memenuhi Syarat Untuk Memperoleh Gelar Sarjana Strata Satu Pada Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Surakarta

Disusun Oleh:

RIFKI ARYA WIGUNA D200 15 0283

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA 2017

PERNYATAAN KEASLIAN TUGAS AKHIR

Saya menyatakan dengan sesungguhnya bahwa tugas akhir dengan judul "Pengaruh Variasi Kecepatan Aliran Udara Primer dan Penambahan Udara Pada Reaktor Kompor Gasifikasi Sekam Padi Metode TLUD dengan Perbedaan Diameter Silinder Reaktor" yang dibuat untuk memenuhi sebagian syarat memperoleh gelar sarjana strata satu pada Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Surakarta, sejauh yang saya ketahui bukan merupakan tiruan dari penelitian atau duplikat dari skripsi yang sudah dipublikasikan dan atau pernah dipakai untuk mendapat gelar sarjana di lingkungan Universitas Muhammadiyah Surakarta atau instansi manapun, kecuali bagian yang sumber informasinya saya cantumkan sebagaimana mestinya.

Surakarta.

2017

RIFKI ARYA WIGUNA

NIM. D200 15 0283

HALAMAN PERSETUJUAN

Tugas Akhir berjudul "Pengaruh Variasi Kecepatan Aliran Udara Primer dan Penambahan Udara Pada Reaktor Kompor Gasifikasi Sekam Padi Metode TLUD dengan Perbedaan Diameter Silinder Reaktor" telah disetujui oleh Pembimbing tugas akhir untuk dipertahankan di depan dewan penguji sebagai syarat untuk memperoleh gelar sarjana strata satu pada Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Surakarta.

Dipersiapkan oleh

Nama

: RIFKI ARYA WIGUNA

NIM

: D200 15 0283

Disetujui pada

Hari

all

Tanggal

Pembimbing

Wijianto, S.T., M.Eng.Sc.

HALAMAN PENGESAHAN

Tugas Akhir berjudul "Pengaruh Variasi Kecepatan Aliran Udara Primer dan Penambahan Udara Pada Reaktor Kompor Gasifikasi Sekam Padi Metode TLUD dengan Perbedaan Diameter Silinder Reaktor" telah dipertahankan dihadapan Dewan Penguji dan telah dinyatakan sah untuk memenuhi sebagian syarat memperoleh gelar sarjana strata satu pada Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Surakarta.

Dipersiapkan Oleh:

Nama

: RIFKI ARYA WIGUNA

NIM

: D200 15 0283

Disahkan pada

Hari

Raba

Tanggal

: 15 Februari 2017

Dewan Penguji

Ketua

: Wijianto, S.T., M.Eng.Sc.

Anggota 1

: Ir. Subroto, MT.

Anggota 2

: Ir. Sartono Putro, MT.

Ketua Jurusan,

Sri Sunarjono, MT.,Ph.D.

Dekan,

Tri Widodo Besar R., S.T., M.Sc., Ph.D.

LEMBAR MOTTO

- Sebaik-baik manusia adalah yang paling banyak manfaatnya bagi orang lain.
- Tak ada sukses yang jatuh dari langit, sukses harus diperjuangkan.
 Seringkali perjuangan adalah tetesan darah dan air mata, bukan jalan lancar, jalan mulus, atau bahkan jalan lurus. (Aldilla Dharma)
- 3. Sesungguhnya bersama kesulitan itu ada kemudahan.

Maka apabila engkau telah selesai (dari suatu urusan) tetaplah bekerja keras (untuk urusan yang lain).

Dan hanya kepada Tuhanmulah engkau berharap.

(Q.S. Al-Insyiroh; 6-8)

ABSTRAK

Salah satu pemanfaatan energi biomasa untuk mengurangi emisi udara adalah dengan penggunaan kompor gasifikasi metode TLUD. Penambahan jumlah udara dan perbedaan diameter pada reaktor merupakan salah satu improvisasi desain kompor masak gasifikasi metode TLUD yang digunakan pada kompor dalam penelitian ini. Tujuan penelitian ini adalah untuk mendeskripsikan temperatur nyala api, waktu nyala efektif, dan menghitung efisiensi termal pada kompor gasifikasi metode TLUD dengan perbedaan diamter silinder dalam reaktor. Pengujian dilakukan dengan mengambil data temperatur nyala api dan temperatur pendidihan air setiap 30 detik pada variasi kecepatan aliran udara primer (8 m/s, 10 m/s, 12 m/s) tanpa penambahan udara dan dengan penambahan udara 2.5 m/s pada dinding reaktor kompor masak gasifikasi metode TLUD. Waktu total operasi dicatat pada setiap pengujian. Hasil penelitian ini menunjukkan bahwa Temperatur nyala api rata-rata tertinggi didapatkan pada variasi kecepatan aliran udara primer 10 m/s. Semakin tinggi kecepatan aliran udara pimer maka semakin sedikit waktu nyala efektif yang dihasilkan. Efisiensi termal terbaik diperoleh pada pengujian variasi kecepatan aliran udara primer 10 m/s dengan penambahan udara 2.5 m/s pada dinding reaktor.

Kata kunci: Gasifikasi, Top-Lit Up Draft, Kompor Gasifikasi, Sekam Padi.

ABSTRACT

One of the utilization of biomass energy to reduce air emissions is to use gasification stove TLUD method. The addition amount of air and the difference in the diameter on the reactor is one of the improvisation of cook stoves gasification TLUD methods design used on the stove in this study. The purpose of this study was to describe the temperature of the flame, time flame effective, and calculate the thermal efficiency of the gasification stove TLUD methods with the differences of the diameter of inner cylinder of the reactor. Testing is done by taking data of the temperature of flame and temperature of boiling water every 30 seconds in the variation of the flow rate of primary air (8 m/s, 10 m/s, 12 m/s) without the addition of air and with the addition of air 2.5 m/s on the reactors wall of gasification cook stoves TLUD method. Total operating time is recorded on each test. The results of this study showed that the highest average temperature is at 10 m/s. The higher the speed of primary air flow the less time flame effective is produced. Thermal efficiency is best obtained on testing variations of the primary air flow velocity of 10 m / s with the addition of air 2.5 m/s at the reactor wall.

Key words: Gasification, Top-Lit Up Draft, Gasification Stove, Rice Husk.

KATA PENGANTAR

Assalamu'alaikum, Wr. Wb.

Alhamdulillahirobbil'alamin, puji syukur atas kehadirat Allah SWT, karena berkat izin-Nya penulis dapat menyelesaikan penulisan laporan tugas akhir dengan judul "Pengaruh Variasi Kecepatan Aliran Udara Primer dan Penambahan Udara Pada Reaktor Kompor Gasifikasi Sekam Padi Metode TLUD dengan Perbedaan Diameter Silinder Reaktor". Pada kesempatan ini penulis menyampaikan terima kasih kepada:

- 1. Bapak Ir. Sri Sunarjono, MT., Ph.D. selaku Dekan Fakultas Teknik Universitas Muhammadiyah Surakarta.
- 2. Bapak Tri Widodo B.R,. ST., M.Sc., Ph.D. selaku Ketua Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Surakarta.
- 3. Bapak Wijianto, S.T., M.Eng.Sc. selaku Pembimbing Tugas Akhir dan Pembimbing Akademik yang telah memberikan arahan dan bimbingan selama menyelesaikan masa perkuliahan.
- 4. Bapak, ibu, dan kakak tercinta yang selalu senantiasa memberikan dukungan baik moral maupun spiritual.
- Seluruh Dosen Jurusan Mesin Fakultas Teknik Universitas Muhammadiyah Surakarta yang telah memberikan bekal ilmu selama menyelesaikan masa perkuliahan.
- Rekan-rekan Teknik Mesin UMS yang tidak bisa disebutkan satupersatu.
- 7. Teman-teman sebaya atas dukungan yang telah diberikan.

Penulis menyadari bahwa laporan ini masih belum sempurna. Oleh karena itu kritik dan saran yang membangun sangat diharapkan.

Wassalamu'alaikum, Wr. Wb.

Surakarta, Februari 2017

RIFKI ARYA WIGUNA

DAFTAR ISI

Halaman Juduli	İ
Pernyataan Keaslian Skripsii	ii
Halaman Persetujuani	iii
Halaman Pengesahani	iv
Lembar Motto	V
Abstrak	vi
Kata Pengantar	viii
Daftar Isii	ix
Daftar Gambar	xii
Daftar Grafik	xiii
Daftar Tabel	ΧV
BAB I PENDAHULUAN	
1.1. Latar Belakang	1
1.2. Perumusan Masalah	3
1.3. Batasan Masalah	3
1.4. Tujuan Penelitian	4
1.5. Manfaat Penelitian	5
1.6. Sistematika Penulisan	5
BAB II TINJAUAN PUSTAKA	
2.1. Tinjauan Pustaka	7
2.2. Dasar Teori	13
2.2.1. Energi Biomassa	13
2.2.2. Gasifikasi	14
2.2.3. Metode Top-Lit Up Draft	15
2.2.4. Proses Termokimia pada TLUD	16
2.2.5. Pirolisis	17
2.2.6. Sekam Padi	18

2.2.7.	Kalor Sensibel, Kalor Laten dan Efisiensi Termal	19
	2.2.7.1. Kalor Sensibel	19
	2.2.7.2. Kalor Laten	19
	2.2.7.3. Efisiensi Termal	20
BAB III METO	DDOLOGI PENELITIAN	
3.1. Metode F	Penelitian2	21
3.1.1.	Tahap Studi Literatur2	22
3.1.2.	Tahap Persiapan2	22
3.1.3.	Tahap Pengujian2	29
3.1.4.	Tahap Analisa	30
3.2. Instalasi	Penelitian	31
BAB IV HASI	L DAN PEMBAHASAN	
4.1. Hasil Per	nelitian	32
4.1.1.	Temperatur Nyala Api Variasi Kecepatan Aliran Udara Primer	
	8 m/s Tanpa Penambahan Udara Pada Dinding Reaktor 3	32
4.1.2.	Temperatur Nyala Api Variasi Kecepatan Aliran Udara Primer	
	10 m/s Tanpa Penambahan Udara Pada Dinding Reaktor 3	33
4.1.3.	Temperatur Nyala Api Variasi Kecepatan Aliran Udara Primer	
	12 m/s Tanpa Penambahan Udara Pada Dinding Reaktor 3	35
4.1.4.	Temperatur Nyala Api Variasi Kecepatan Aliran Udara Primer	
	8 m/s Dengan Penambahan Udara 2.5 m/s Pada Dinding	
	Reaktor	36
4.1.5.	Temperatur Nyala Api Variasi Kecepatan Aliran Udara Primer	
	10 m/s Dengan Penambahan Udara 2.5 m/s Pada Dinding	
	Reaktor	37
4.1.6.	Temperatur Nyala Api Variasi Kecepatan Aliran Udara Primer	
	12 m/s Dengan Penambahan Udara 2.5 m/s Pada Dinding	
	Reaktor	39

4.2. Pembahasan41
4.2.1. Perbandingan Temperatur Nyala Api Terhadap Variasi
Kecepatan Aliran Udara Primer Tanpa Penambahan Udara
Pada Dinding Reaktor41
4.2.2. Perbandingan Temperatur Nyala Api Terhadap Variasi
Kecepatan Aliran Udara Primer Dengan Penambahan Udara
2.5 m/s Pada Dinding Reaktor42
4.2.3. Perbandingan Temperatur Nyala Api Terhadap Variasi
Kecepatan Aliran Udara Primer 10 m/s Tanpa Penambahan
Udara dan Variasi Kecepatan Aliran Udara Primer 10 m/s
Dengan Penambahan Udara 2.5 m/s Pada Dinding
Reaktor44
4.2.4. Perbandingan Temperatur Pendidihan Air terhadap Waktu
Dengan Variasi Kecepatan Aliran Udara Primer tanpa
Penambahan Udara Pada Dinding Reaktor 46
4.2.5. Perbandingan Temperatur Pendidihan Air Terhadap Waktu
dengan Variasi Kecepatan Aliran Udara Primer dengan
Penambahan Udara 2.5 m/s Pada Dinding Reaktor47
4.3. Perhitungan
4.3.1. Perhitungan Kalor Sensibel Air49
4.3.2. Perhitungan Kalor Laten Air51
4.3.3. Perhitungan Efisiensi Termal53
BAB V KESIMPULAN DAN SARAN
5.1. Kesimpulan
5.2. Saran
DALTAD DUCTAVA

DAFTAR PUSTAKA LAMPIRAN

DAFTAR GAMBAR

Gambar 2.1. Skema Gasifikasi Metode Top-Lit Up Draft (TLUD)	17
Gambar 3.1. Diagram Alir Penelitian	21
Gambar 3.2. Kompor Gasifikasi Sekam Padi dengan Metode TLUD	22
Gambar 3.3. Dimensi Kompor Gasifikasi Sekam Padi dengan Metode	
TLUD	23
Gambar 3.4. <i>Blower</i>	23
Gambar 3.5. Thermo Anemometer	24
Gambar 3.6. Thermorider Digital dan Thermocouple	25
Gambar 3.7. Katub Pengatur	26
Gambar 3.8. Saluran Pembagi Udara Tambahan	26
Gambar 3.9. Timbangan Analog	27
Gambar 3.10. Stopwatch	27
Gambar 3.11. Termometer	28
Gambar 3.12. Sekam Padi	28
Gambar 3 13 Instalasi Penguijan	31

DAFTAR GRAFIK

Grafik 4.1. Hubungan Temperatur Nyala Api Terhadap Waktu Dengan
Variasi Kecepatan Aliran Udara Primer 8 m/s Tanpa
Penambahan Udara Pada Dinding Reaktor
Grafik 4.2. Hubungan Temperatur Nyala Api Terhadap Waktu Dengan
Variasi Kecepatan Aliran Udara Primer 10 m/s Tanpa
Penambahan Udara Pada Dinding Reaktor
Grafik 4.3. Hubungan Temperatur Nyala Api Terhadap Waktu Dengan
Variasi Kecepatan Aliran Udara Primer 12 m/s Tanpa
Penambahan Udara Pada Dinding Reaktor
Grafik 4.4. Hubungan Temperatur Nyala Api Terhadap Waktu Dengan
Variasi Kecepatan Aliran Udara Primer 8 m/s Dengan
Penambahan Udara 2.5 m/s Pada Dinding Reaktor
Grafik 4.5. Hubungan Temperatur Nyala Api Terhadap Waktu Dengan
Variasi Kecepatan Aliran Udara Primer 10 m/s Dengan
Penambahan Udara 2.5 m/s Pada Dinding Reaktor 37
Grafik 4.6. Hubungan Temperatur Nyala Api Terhadap Waktu Dengan
Variasi Kecepatan Aliran Udara Primer 12 m/s Dengan
Penambahan Udara 2.5 m/s Pada Dinding Reaktor 39
Grafik 4.7. Perbandingan Temperatur Nyala Api Terhadap Waktu Dengan
Variasi Kecepatan Aliran Udara Primer Tanpa Penambahan
Udara Pada Dinding Reaktor41
Grafik 4.8. Perbandingan Temperatur Nyala Api Terhadap Waktu Dengan
Variasi Kecepatan Aliran Udara Primer Dan Penambahan
Udara 2.5 m/s Pada Dinding Reaktor43
Grafik 4.9. Perbandingan Temperatur Nyala Api Terhadap Variasi
Kecepatan Aliran Udara Primer 10 m/s Tanpa Penambahan
Udara dan Dengan Penambahan Udara 2.5 m/s Pada Dinding
Reaktor45

Grafik 4.10.	. Perbandingan Temperatur Pendidihan Air terhadap Waktu	
	dengan Variasi Kecepatan Aliran Udara Primer tanpa	
	Penambahan Udara Pada Dinding Reaktor	16
Grafik 4.11.	. Perbandingan Temperatur Pendidihan Air terhadap Waktu	
	dengan Variasi Kecepatan Aliran Udara Primer dengan	
	Penambahan Udara Pada Dinding Reaktor	1 8

DAFTAR TABEL

Tabel 2.1.	Teknis Energi Potensial dari Pertanian efektif Biomassa Padat .	14
Tabel 4.1.	Hasil Perhitungan Kalor Sensibel Air Pada Variasi Kecepatan	
	Aliran Udara Primer Tanpa Penambahan Udara Pada Dinding	
	Reaktor	50
Tabel 4.2.	Hasil Perhitungan Kalor Sensibel Air Pada Variasi Kecepatan	
	Aliran Udara Primer Dengan Penambahan Udara 2.5 m/s Pada	
	Dinding Reaktor	50
Tabel 4.3.	Hasil Perhitungan Kalor Laten Air Variasi Kecepatan Aliran	
	Udara Primer Tanpa Penambahan Udara	51
Tabel 4.4.	Hasil Perhitungan Kalor Laten Air Variasi Kecepatan Aliran	
	Udara Primer Dengan Penambahan Udara 2.5 m/s Pada	
	Dinding Reaktor	52
Tabel 4.5.	Hasil Perhitungan Efisiensi Termal Pada Variasi Kecepatan	
	Aliran Udara Primer Tanpa Penambahan Udara Pada Dinding	
	Reaktor	53
Tabel 4.6.	Hasil Perhitungan Efisiensi Termal Pada Variasi Kecepatan	
	Aliran Udara Primer Dengan Penambahan Udara 2.5 m/s Pada	
	Dinding Reaktor	54