DAFTAR PUSTAKA


Balasundaram, R., Patel, V., Bhole, S., Chen D., 2014. *Effect of zinc interlayer on ultrasonic spot welded aluminum-to-copper joints.* Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada


EAA - *European Aluminium Association*, 1994. *Resistance During Spot Welding of Steel and Aluminium.* TALAT. 4500.01.03


Marashi, P., Pouranvari, S. Amirabdollahian, A. Abdei, M. Goodarzi, 2008, 
*Microstructure and failure behavior of dissimilar resistance spot 
welds between low carbon galvanized and austenitic stainless steel*, 
Material Science and Engineering A 480.


Mirza, F. dkk. (2016). *Effect of welding energy on microstructure and 
strength of ultrasonic spot welded dissimilar joints of aluminum to 
steel sheets*. http://dx.doi.org/10.1016/j.msea.2016.05.040

Penner, L. Liu, A. Gerlich, and Y. Zhou, 2014. “*Dissimilar Resistance Spot 
Welding of Aluminium to Magnesium with Zn-Coated Steel 
interlayer*”. Welding Journal 225-s – 231-s.

Ren, X., Liu, L., 2013. *Interface microstructure and mechanical properties 
of arc spot welding Mg–steel dissimilar joint with Cu interlayer*. Key 
Laboratory of Liaoning Advanced Welding and Joining Technology, 
School of Materials Science and Engineering, Dalian University of 
Technology, Dalian 116024, People’s Republic of China

Corpotation

Salim dan Triyono, 2012, *Kekuatan Tarik dan Geser Dengan Pengelasan 
Resistance Spot Welding (RSW) Antara Baja Karbon Rendah 
Dengan Aluminium*. Teknik Mesin UNS.


Zhang, W. dkk. *Interfacial microstructure and mechanical property of resistance spot welded joint of high strength steel and aluminium alloy with 4047 AlSi12 interlayer*. Materials and Design 57 (2014) 186–194